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Most studies related to phase transitions refer to opaque media. The wide use of semi- 
transparent materials in various branches of science and technology imposes substantial re- 
quirements on the technology of obtaining them. 

In this connection the calculated radiation of nonstationary radiative-conductive heat 
transfer (RCHT) is most necessary for the choice of optimal thermal regimes for the growth 
of high-quality optical crystals. A small number of studies [1-3] is devoted to numerical 
studies of RCHT in semitransparent media with first kind phase transitions. This fact is 
related to a number of problems, generated in the solution of the Stefan boundary-value prob- 
lem, which becomes integrodifferential as related to the integral nature of radiation fluxes. 

The mathematical statement of the Stefan problem with explicit phase separation bounda- 
ries is written in the form 
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The conditions (2) include as special cases boundary conditions of the first, second, 
and third type, since the parameters sl, s 2 can acquire the values 0, 1 [4]. Here ci(T), 
hi(T) is the heat capacity of the material per unit volume and the thermal conductivity co- 
efficient, qi(T) are the densities of the resulting fluxes toward the surface boundaries 
(i = i, 2), Fi(T) is the density of thermal sources, 7 is the phase transition heat, and T* 
is the melting temperature. 

To solwa the boundary-value problem (1)-(4) without thermal sources in the presence of a 
single front, quite effective difference methods were developed with an explicit front extrac- 
tion [5], which in the case of dependence of the unknown function on several spatial coordi- 
nates do not apply even to single-front problems. Moreover, they are not always useful even 
in the case of the one-dimensional Stefan problem, when heat release sources exist in the me- 
dium, leading to "smearing" of the geometrical boundary of the phase transition front. In 
other words, a whole phase transition region is manifested. 

An example was given in [6] of the unimportance of the classical solution of the Stefan 
problem for the inhomogeneous thermal conductivity problem. In this relation, a number of 
authors [4, 7] have developed numerical methods of direct computation for solving the Stefan 
problem without explicit extraction of the phase transition front, based on the "smearing" 
principle of heat capacity over temperature, which is independent of the number of measure- 
ments~ The difference schemes of direct computation of the Stefan problem, verified on self- 
similar solutions, make it possible to obtain highly accurate solutions. 

In this study we investigate nonstationary RCHT during melting a semitransparent mater- 
ial, found between two nontransparent boundaries. It is assumed that the solid phase is 
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crystalline, the phase transition temperature is constant, the transition is accompanied by 
extraction of latent heat of phase transition, there is no convection in the liquid phase, 
the medium emits and absorbs, but does not scatter thermal energy, the thermophysical proper- 
ties are independent of temperature, and the optical properties are constant - the medium is 
gray, the boundary between the phases is diffusely transmitting, while the external surface 
of the sample are absolutely black. 

Taking into account the restrictions mentioned above, the boundary-value problem (1)-(4) 
o(~,~) 

with boundary conditions of the first kind in the heat conductivity function u(~, ~)= y A(z)dz 

has the dimensionless shape o 

o H  (o) o~ (o) 
~  u, 0 < ~ < i ,  T > O ;  (5 )  
o[ ~ ox a~ 

u(0, a;) = A~(O(0,,-c) - -  0 " )  + A20*, u( l ,  x) = A20 (1, x). (6 )  

Conditions (6) were written down with account of the piecewise constant nature of the 
medium properties (Ai, ci) and the conditions 0(1, ~) < O* < 0(0, ~). Here ~ = x/L: A i = 
Xi/kr; Cpi = ci/Cr; O(x, T) = T(x, T)/Tr; ~ = Irt/(c rL2); Sk = o0Tr3L/Ir; 0" = T*/Tr; ~ = 
y/(crT r) (i = 1 corresponds to the liquid, and i = 2 corresponds to the solid phase), 

. /C~2O for O < O * ;  

and r is a subscript referring to the decisive parameters. 

The dimensionless radiation flux r is determined by solving the transport equation [8], 
being an integral relation includingthe unknown and the boundary temperatures. The expres- 
sion for Sk8r in (5) can be treated as a thermal source density, which in the given case 
depends substantially on the solution of the problem 
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Kj (g) = J" ~j-2 exp(_g/~)dlt~ 
0 

Where ~i, ni are the absorption and refraction coefficients, and 

are the exponential functions (i = i, 2; j = i, 2 .... ). 

Taking into account (7), Eq. (5) becomes nonlinear, being integrodifferential in 0(6, ~). 
After approximating 8Hs(O)/8~ by a finite-difference scheme by means of the Green's function 
for the differential operator of the left-hand side (5), the boundary-value problem (5), (6) 
reduces to the nonlinear integral equation 

I 
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W (O) = AS~A__.7_(O) + S k Or _ u(O), 

{ishzsh(t--~)/sht, z ~ ,  
G(~,z)= sh~sh(t--z)/sht,, z>~. 

In this case the integral is evaluated by Gauss quadratures. 

Thus, the Stefan boundary-value problem (1)-(4) with nonlinear internal heat release 
sources was reduced to a nonlinear integral RCHT equation with phase transitions without ex- 
plicit extraction of phase separation boundaries. The numerical solution algorithm of Eq. 
(8) is ideologically equivalent to numerical schemes of direct computation. 

The advantage of the suggested method of solving one-dimensional RCHT problems with phase 
transformations over the finite-difference schemes consists of the fact that, unlike the lat- 
ter, it is not related to the choice of the accuracy order of the difference scheme in approx- 
imating the differential problem by finite differences. The method makes it possible to use 
effective iteration processes used in solving functional equations. Equation (8) was solved 
by the iteration method of [9]. 

The numerical calculation of temperature field formation during the melting of a one- 
dimensional planar fluorite layer [T = 1700 K, kr = 9 W/(m.K)] was carried out for the fol- 
lowing dimensionless parameters: ~ = -0.i, c_ = 0.75, c 2 = i, A l = 2, A 2 = i, n I = n 2 = 1.5, 
xz = 2, • = i, G* = 0.5, G(~, 0) = G(I, ~) ~ 0.i, 0(0, ~) : i. 

The calculation results, shown in Figs. 1 and 2, reflect the dynamic temperature distri- 
bution in a semitransparent sample, in which the melting process occurs. Figure 1 shows the 
dimensionless temperatures profiles in a layer at various moments of dimensionless time 
T = s.10 -2 (s = 4; 3; 2; 1.5; l; 0.3, lines 1-6) for Sk = l0 (the radiation-conductive param- 
eter). Figure 2 illustrates the temperature field (~ = s.10 -a, lines 1-5 for s = 5, 4, 3, 
2, l) for Sk = i00. As could be expected, the establishment process of the stationary regime 
starts quite earlier than in the case Sk = 10. 

In conclusion we note that the method suggested for solving the Stefan problem has a 
high degree of convergence of the iteration process. 
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